已知圆c:(x-1)^2+(y-2)^2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(1)求证:直线l恒过定点

2025-01-04 01:27:10
推荐回答(1个)
回答1:

(1)直线L整理得到
x+y-4+m(2x+y-7)=0
解方程组
x+y-4=0
2x+y-7=0
得x=3 y=1
直线L:(2m+1)x+(m+1)y-7m-4=0过定点(3,1)

(2)将(3,1)代入圆的方程,易知点在圆内。
设圆心到直线L的距离为d,弦长为2t,则满足
t²=r²-d²
要使t有最大值,则d取最小值,当直线过圆心时,d有最小值0,此时m=-1/3
要使t有最小值,则d取最大值
d²=a=(3m+1)^²/(5m²+6m+2)
=(9m²+6m+1)/(5m²+6m+2)
5am²+6am+2a=9m²+6m+1
(5a-9)m²+(6a-6)m+(2a-1)=0
这个方程有解必须
(6a-6)²-4(5a-9)(2a-1)≥0
a²-5a≤0
0≤a≤5
dmax=√5
2t=4√5
将a=5代入(5a-9)m²+(6a-6)m+(2a-1)=0,解得
m=-3/4