PN结是由一个N型掺杂区和一个P型掺杂区紧密接触所构成的,其接触界面称为冶金结界面。
在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,我们称两种半导体的交界面附近的区域为PN结。
在P型半导体和N型半导体结合后,由于N型区内自由电子为多子空穴几乎为零称为少子,而P型区内空穴为多子自由电子为少子,在它们的交界处就出现了电子和空穴的浓度差。
扩展资料:
相关特性:
从PN结的形成原理可以看出,要想让PN结导通形成电流,必须消除其空间电荷区的内部电场的阻力。很显然,给它加一个反方向的更大的电场,即P区接外加电源的正极,N区结负极,就可以抵消其内部自建电场,使载流子可以继续运动,从而形成线性的正向电流。
而外加反向电压则相当于内建电场的阻力更大,PN结不能导通,仅有极微弱的反向电流(由少数载流子的漂移运动形成,因少子数量有限,电流饱和)。
当反向电压增大至某一数值时,因少子的数量和能量都增大,会碰撞破坏内部的共价键,使原来被束缚的电子和空穴被释放出来,不断增大电流,最终PN结将被击穿(变为导体)损坏,反向电流急剧增大。
这就是PN结的特性(单向导通、反向饱和漏电或击穿导体),也是晶体管和集成电路最基础、最重要的物理原理,所有以晶体管为基础的复杂电路的分析都离不开它。
参考资料来源:百度百科-PN结
一块半导体晶体一侧掺杂成P型半导体,另一侧掺杂成N型半导体,中间二者相连的接触面称为PN结(英语:pn junction)。PN结是电子技术中许多元件,例如半导体二极管、双极性晶体管的物质基础。
采用一些特殊的工艺(见本条目后面的段落),可以将上述的P型半导体和N型半导体紧密地结合在一起。在二者的接触面的位置形成一个PN结。
P型、N型半导体由于分别含有较高浓度的“空穴”和自由电子,存在浓度梯度,所以二者之间将产生扩散运动。即:
(1)自由电子由N型半导体向P型半导体的方向扩散
(2)空穴由P型半导体向N型半导体的方向扩散
载流子经过扩散的过程后,扩散的自由电子和空穴相互结合,使得原有的N型半导体的自由电子浓度减少,同时原有P型半导体的空穴浓度也减少。在两种半导体中间位置形成一个由N型半导体指向P型半导体的电场,成为“内电场”。
拓展资料:
由于PN结的单向导电性,可以利用它作为基础制造半导体二极管、三极管等电子元件,例如常用的稳压二极管、光电二极管、发光二极管(LED)等。
p型半导体和n型半导体接触面形成pn结,p区中有大量空穴流向n区并留下负离子,n区中有大量电子流向p区并留下正离子(这部分叫做载流子的扩散),正负离子形成的电场叫做空间电荷区,正离子阻碍电子流走,负离子阻碍空穴流走(这部分叫做载流子的漂移),载流子的扩散与漂移达到动态平衡,所以pn结不加电压下呈电中性。
是由半导体材料形成的。