letx=tanudx=(secu)^2 dux=1, u=π/4x=√3, u=π/3∫(1->√3) dx/[x^2.√(1+x^2)]=∫(π/4->π/3) (secu)^2 du/[(tanu)^2.secu]=∫(π/4->π/3) [(secu)/(tanu)^2] du=∫(π/4->π/3) [ cosu/(sinu)^2] du=∫(π/4->π/3) dsinu/(sinu)^2= -[1/sinu]|(π/4->π/3)=√2 - (2/3)√3