首先换元,再利用变限积求导 令u=x^二 -t^二.则t=√(x^二-u). dt=d√(x^二-u)=一/二•一/√(x^二-u)du t=0,u=x^二.t=x,u=0 ∴∫(0→x)tf(x^二 -t^二)dt =∫(x^二→0)√(x^二-u) f(u)d√(x^二-u) =∫(x^二→0)√(x^二-u) f(u)•(一/二•一/√(x^二-u))du =∫(x^二→0) f(u)•一/二du =一/二∫(x^二→0) f(u)du d/dx•∫(0→x)tf(x^二 -t^二)dt =d/dx•(一/二∫(x^二→0) f(u)du) =(一/二∫(x^二→0) f(u)du)′ =一/二•f(x^二)(x^二)′ =一/二•f(x^二)•二x =xf(x^二