x²-3x+1=0∴x+1/x=3x²+1/x²=9-2=7∴x²/(x^4+x²+1)=1/(x²+1+1/x²)=1/(1+7)=1/8
x²-3x+1=0△=9-4=5>0有两个根x1+x2=3x1x2=1所以两个根互为倒数 且都为正则 x²/(x^4+x²+1) =1/[x²+1+(1/x²)] =1/[1+(x+1/x)²-2] =1/[(x+1/x)²-1] =1/(9-1) =1/8