微积分 函数可导和连续的关系?

微积分函数可导和连续的关系?
2024-11-25 04:28:22
推荐回答(1个)
回答1:

可导必然连续,连续不一定可导

判断陵升滚连续: 设点x0,若x趋于x0时,limf(x)=f(x0),则f(x)在x0连续

判断可导: 需证左导=右导,由定笑举义
lim(f(x)-f(x0))/(x-x0),其中x趋于x0+和x0-

举个例子吧,f(x)=|x|

要证在x=0是否可导

x趋于x0+时,lim (f(x)-f(0))/(x-0)=lim x/x=1
x趋于x0-时,lim (f(x)-f(0))/尺余(x-0)=lim (-x)/x=-1

所以左导不等于右导,f(x)在0点导数不存在