令t=x^2>=0y=t/(t+1)=1-1/(t+1)0=<1/(t+1)<1因此值域为0=
y=x^2/(x^2+1)=1-1/(x^2+1)x^2+1>=1,0<1/(x^2+1)<=1,-1<=-1/(x^2+1)<0,0<=1-1/(x^2+1)<1。所以,y=x^2/(x^2+1)的值域是[0,1)。
[0,1)x为0取得最小值,x为负无穷或正无穷时逼近1
y=x^2/x^2+1=1-1/x^2所以值域为(负无穷,1)