求曲线f(x)=[(x^2+2x-3)e^(1⼀x)]⼀[(x^2-1)arctanx]+ln(1+e^x)的渐近线.

求曲线f(x)=[(x^2+2x-3)e^(1/x)]/[(x^2-1)arctanx]+ln(1+e^x)的渐近线.
2024-12-14 16:36:13
推荐回答(2个)
回答1:

首先,求定义域:
f(x) = {(x²+2x-3)e^(1/x)}/{(x²-1)arctanx} + ln(1+e^x)
= {(x+3)(x-1)e^(1/x)}/{(x+1)(x-1)arctanx} + ln(1+e^x)
= {(x+3)e^(1/x)}/{(x+1)arctanx} + ln(1+e^x)
分母不为零:x+1≠0,x≠0,x-1≠0,arctanx≠0
∴定义域:x≠-1,x≠0,x≠1
∵(x→1-)limf(x) = (x→1+)limf(x) = { [(1+3)e)]/[(1+1)arctan1] + ln(1+e) } = 8e/π+ln(1+e)
∴x=1是f(x)的可去间断点,
∴x=1不是f(x)的渐近线
∵(x→-1-)lim{ [(x+3)e^(1/x)]/[(x+1)arctanx] + ln(1+e^x) } = +∞
(x→-1+)lim{ [(x+3)e^(1/x)]/[(x+1)arctanx] + ln(1+e^x) } = -∞

∴x=-1是渐近线
至于x=0时的情况,我还没想好

回答2:


如图所示。