f(x)=2√3sinxcosx+2cos²x-1=√3sin2x+cos2x=2sin(2x+π/6),则递减区间是:2kπ+π/2≤2x+π/6≤2kπ+3π/2,得:kπ+π/6≤x≤kπ+2π/3,则减区间是:[kπ+π/6,kπ+2π/3],其中k∈Z
f(x) =2cosx(√3sinx+cosx)-1=4cosxsin(x+π/6)-1
=2sin(2x+π/6)-2sin(-π/6)-1
=2sin(2x+π/6)
2kπ+π/2<=2x+π/6<=2kπ+3π/2==>kπ+π/6<=x<=kπ+2π/3
∴减区间为kπ+π/6<=x<=kπ+2π/3
已知函数f(x)=2根号3sinxcosx+2cos方x-1(x属于R) 求函数f(x)的单调递减区间
知道手机网友你好:
你要发布问题,就把问题发完整。问的题目是什么,写清楚。以免浪费短信费,耽误你。