设s1=1+1/1눀+1/2눀,s2=1+1/2눀+1/3눀,s3=1+1/3눀+1/4눀

2024-12-13 00:34:43
推荐回答(2个)
回答1:

算出√s1=3/2 √s2=7/6 √s3=13/12
设 n分别等于 1 2 3 …… 则 将√s1=3/2 √s2=7/6 √s3=13/12 …… 分别加起来
分别等于 3/2 8/3 15/4 …… 由此得出 (n2+2n)/(n+1)
即使 不给你满分 也给你百分之90的分

回答2:

∵sn=1+[n^2+(n+1)^2]/[n²(n+1)²]=(n^2+n+1)^2/[n²(n+1)²]
∴√sn=(n^2+n+1)/[n(n+1)]=1+1/n-1/(n+1)
∴s=(1+1-1/2)+(1+1/2-1/3)+(1+1/3-1/4)+……+[1+1/n-1/(n+1)]
=n+(1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1))
=n+(1-1/(n+1))=n+1-1/(n+1)