解:
你的理解是正确却的。
1s 路程总时间为t[1]
2s 路程总时间为t[2],则t[2]-t[1], 就是第二个s 路程所用时间;
3s 路程总时间为t[3],则t[3]-t[2] 就是第三个s 路程所用时间;
.....
以此类推
ns 路程总时间为t[n],则t[n]-t[n-1] 就是第n个s 路程所用时间;
由s = 1/2 at² ==> t = √(2s/a) = √(2/a) * √s , 因此:
t[1] = √(2/a) * √(1s) =√(2s/a)* 1
t[2] = √(2/a) * √(2s) ==> t[2] -t[1] = √(2s/a)*(√2 -1)
t[3] = √(2/a) * √(3s) ==> t[3] -t[2] = √(2s/a)*(√3 -√2)
....
t[n] = √(2/a) * √(ns) ==> t[n] -t[n-1] = √(2s/a)*(√n -√(n-1))
因此,连续相同位移时间比为;
(t[1]):(t[2]-t[1]):(t[3]-t[2]):......(t[n]-t[n-1])
=(√(2s/a) * √(1s)) :√(2s/a)*(√2 -1) :√(2s/a)*(√3 -√2) :......:√(2s/a) * (√n - √(n-1))
=1:(√2 -1):(√3 - √2):......:(√n - √(n-1))
希望这样推导能帮助你理解公式的来历。