已知a>0,b>0,a、b的等差中项等于1⼀2,设x=b+2⼀a,y=a+1⼀(2b),求x+y的最小值(用乘1法。要有过程)

2024-12-19 14:51:09
推荐回答(2个)
回答1:

解:依a、b的等差中项等于1/2得,a+b=2*1/2=1
则x+y=b+2/a+a+1/(2b)
=a+b+2/a+1/(2b)
=1+2(a+b)/a+(a+b)/(2b)
=1+2+2b/a+a/(2b)+1/2
=2b/a+a/(2b)+7/2 (因为a>0,b>0;知2b/a>0,a/(2b)>0)
≥2√[2b/a×a/(2b)] +7/2 (此时2b/a=a/(2b)即a²=4b²得a=2b,代入a+b=1,解得a=2/3,b=1/3等差中项为1/2,公差为1/6故成立,可取等号)
=2+7/2=11/2
因此(x+y)min=11/2

回答2:

0