某人每月收入120元,全部用于购买X和Y商品,总效用函数是U=XY,X的价格是2元,Y的价格是3元

2024-11-28 00:00:54
推荐回答(2个)
回答1:

1)
2X+3Y=120
Y=40-2X/3
U=XY=X(40-2X/3)
=-2X^2/3+40X
=-2/3(X-30)^2+600
X=30,Y=20
U=600
2)
U=(X+1)(Y+1)-XY
=X+Y+1
U=XY
X=0,Y=0
U=0
0<=U<=600
3)他的收入应该是K
U=XY
2X+3Y=120
3Y=120-2X
U=XY=X(40-2X/3)
=-2X^2/3+40X
2*1.40X+3Y=K
3Y=K-2.80X
U=XY=X(K-2.80X/3)
=XK-2.80X^2/3=-2X^2/3+40X
XK=0.8X^2/3+40X
K=0.8X/3+40(0<=X<=60)

回答2:

X数量x, Y数量为y, 总效用函数是U=xy
2x+3y=120
U=xy=x(120-2x)/3 求极大值 当x=120-2x时U最大
即x=40 y=40
U'=-(2/3)x+120 边际效应=120-(2/3)40
总效=40*40/3
当X为2*(1+40%)=2.8时
要效用不变,收入=40*2.8+40*3=232元