设f(x)连续,则[d∫(下0上x)tf(x^2-t^2)dt]⼀dx=? 最好写出解题步骤

2024-12-19 01:35:32
推荐回答(4个)
回答1:

简单计算一下即可,答案如图所示

回答2:

..eq.. f(0)*x + 2x* integer(_0^x)(t*(df(x^2-t^2)/dx))dt

回答3:

y = ∫[0,x] t f(x² - t²) dt
令u = x² - t²,du = -2t dt
当t = 0,u = x²;当t = x,u = 0
y = ∫[x²,0] t f(u) * du/(-2t)
= 1/2 ∫[0,x²] f(u) du
dy/dx = 1/2 [2x * f(x²) - 0]
= x f(x²)

回答4:

........