计算(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1

2024-11-28 09:02:12
推荐回答(4个)
回答1:

(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^2-1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^4-1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^8-1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^16-1)*(2^16+1)*(2^32+1)+1
=(2^32-1)*(2^32+1)+1
=2^64-1+1
=2^64

回答2:

(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2-1)(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^2-1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=2^64-1+1=2^64

回答3:

(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2-1)(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^2-1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=2^64-1+1=2^64

回答4:

=(2^2-1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=2^23