x2+(y-3√x2)2=1 函数图象是个心形,即心形线。
心形线,是一个圆上的固定一点在它绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名。
心脏线亦为蚶线的一种。在曼德博集合正中间的图形便是一个心脏线。心脏线的英文名称“Cardioid”是 de Castillon 在1741年的《Philosophical Transactions of the Royal Society》发表的;意为“像心脏的”。
扩展资料
关于心形线的爱情故事:
《数学的故事》里面说到了数学家笛卡尔的爱情故事。笛卡尔于1596年出生在法国,欧洲大陆爆发黑死病时他流浪到瑞典,
1649年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。跟随前来通知的侍卫一起来到皇宫,他见到了在街头偶遇的女孩子。从此,他当上了小公主的数学老师。
小公主的数学在笛卡尔的悉心指导下突飞猛进,笛卡尔向她介绍了自己
研究的新领域--直角坐标系。每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。
笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀。
公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是著名的“心形线”。
国王死后,克里斯汀登基,立即派人在欧洲四处寻找心上人,无奈斯人已故,先她一步走了,徒留她孤零零在人间...
据说这封享誉世界的另类情书还保存在欧洲笛卡尔的纪念馆里。
参考资料:百度百科 - 心形线
图像如下图:
解:
性质:
1、算出该函数图象与Y轴和X轴的交点的坐标,描点;连线,可以作出一次函数的图象——一条直线。
2、 在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3、k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大。
当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
是桃心