这次初二数学月考才47分(100分满分),平时数学最差了,老是拖后腿。上课数学都听得懂,但考试就是不行。

考这么差都觉得初二了没希望了。能有什么方法提高分数?
2024-12-16 12:16:14
推荐回答(3个)
回答1:

这是你心理的暗示,就是说,你总是认为自己数学不行,而使自己的能力受到了限制,你上课都是听到懂的是吧?我的语文和你的数学的月考成绩差不多-_-,我建议你在考试前几天晚上睡觉的时候都想着——自己考了满分,受到了大家的尊敬和佩服,就行了,然后在考试的时候不用太在意成绩,因为这只是月考,不是初三的毕业中考,你减轻自己的压力、别太看重名次,把心态放平了,下次月考照我说的去做,试试看,我想你成绩应该是能够提高的。上面几楼显然都是抄来的,而且我想你看了以后会对自己没有信心的,但是你数学一定是很好的,潜意识里总是给自己泄气,而且同学们肯定没有少批评你,你需要的是鼓励

回答2:

上课认真听 作业自己做 有不会的自己思考 实在不会问老师或同学 自己买辅导材料做。
系统学习方法
一、学习的根本规律——思路清晰
1、简单学习——侧重知识点的学习——理解、记忆、练习;
2、系统学习——归纳总结——骨架、整理、充实;
完整的学习是的、2的结合。
二、如何使用根本规律学习:
1、难题:知识点多、知识跨度广;
2、解题过程:建立各知识点之间联系的过程;
3、不会解题:断点;
4、要系统学习:心中有一盘整体的棋;
三、如何进行系统学习:
1、建立知识骨架;
2、为骨架填充血肉;
3、找出各部分纵横方向之间的联系
四、系统学习的完整过程:
1、画出完整的知识结构图;
2、把这个图中的知识点和具体学习内容联系起来(填充血肉);
3、将这个相互联系的知识系统整体移植到大脑中。

回答3:

学好数学是能力的培养:
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习。在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。保证数量就是①选准一本与教材同步的辅导书或练习册。②做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。④每天保证1小时左右的练习时间。
保证质量就是①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。②落实:不仅要落实思维过程,而且要落实解答过程。③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好
我上初二了,数学在班上是前三名,你不会的问题可以问我