lim x趋于0,(1+x)的1⼀x次方-e⼀x的极限

2024-12-30 15:54:38
推荐回答(2个)
回答1:

lim(x->0) [(1+x)^(1/x)-e]/x
=lim(x->0) {e^[(1/x)ln(1+x)]-e}/x
=lim(x->0) {e^[1-x/2+o(x)]-e}/x(ln(1+x)泰勒公式)
=lim(x->0)e* {e^[-x/2+o(x)]-1}/x
=lim(x->0)e* {1-x/2+o(x)-1}/x(e^x泰勒公式)
=-e/2

回答2:

lim(x->0) [(1+x)^(1/x)-e]/x
=lim(x->0) {e^[(1/x)ln(1+x)]-e}/x
=lim(x->0) (1+x)^(1/x)*[1/x(1+x)-ln(1+x)/x^2]
=lim(x->0) (1+x)^(1/x)* lim(x->0) [x-(1+x)ln(1+x)]/(1+x)x^2
=e*lim(x->0) [1-ln(1+x)-1]/[x^2+2x(1+x)]
=-e*lim(x->0) 1/(1+x)(6x+2)
=-e/2