求不定积分1⼀(1-根号下(x^2-1))

如题,要详细过程…
2025-01-31 20:56:25
推荐回答(2个)
回答1:

先做三角代换,令x=secu,则dx=secutanudu,原积分=∫secutanudu/(1-tanu)=∫sinudu/(cosu(cosu-sinu)),再做万能代换,令t=tan(u/2),则sinu=2t/(1+t²),cosu=(1-t²)/(1+t²),du=2dt/(1+t²)) ∫sinudu/(cosu(cosu-sinu))=4∫tdt/((t+1)(t-1)(t²+2t-1))(后面的计算很复杂)

回答2:

ijs sjdufis 特人特意让她