由 x^2-3x+1=0 得 x^2+1=3x,
显然x≠0,所以两边同除以x得 x+1/x=3, (1)
平方得 x^2+1/x^2+2=9,
因此 x^2+1/x^2=7, (2)
又(1)*(2)得 x^3+1/x^3+x+1/x=21,
所以 x^3+1/x^3=18 (3)
(2)*(3)得 x^5+1/x^5+x+1/x=126,
因此,x^5+1/x^5=123 。
x的平方-3x+1=0,
∴x^2+1=3x,
x+1/x=3,
x^2+1/x^2=(x+1/x)^2-2=7,
x^3+1/x^3=(x+1/x)(x^2+1/x^2)-(x+1/x)=18,
x^5+1/x^5=(x^2+1/x^2)(x^3+1/x^3)-(x+1/x)=7*18-3=123.
X+1/x=3
x²+1/x²=7
x³+1/x³=3×(7-1)=18
(x²+1/x²)(x³+1/x³)=x^5+1/x^5+x+1/x=126
x^5+1/x^5=123