1*2+2*3+3*4+......+n(n=1)=

2024-12-30 06:38:06
推荐回答(1个)
回答1:

1*2+2*3+3*4+......+n(n-1)
=2²-2+3²-3+4²-4+...+n²-n
=(1²+2²+3²+4²+..+n²)-(1+2+3+4+...+n)
=n(n+1)(2n+1)/6-n(n+1)/2
=n(n+1)(2n+1-3)/6
=n(n-1)(n+1)/3
注:
用到了公式:1²+2²+3²+4²+..+n²=n(n+1)(2n+1)/6
和 1+2+3+4+...+n=n(n+1)/2
=================
1*2+2*3+3*4+......+n(n+1)=n(n+1)(n+2)/3