急!一道关于对数函数的高一数学题!在线~~

题目见下图,数学高手一定要帮帮忙哦~~
2024-12-04 06:32:46
推荐回答(4个)
回答1:

解:(1)令t=log a X,则x=a^t
所以f(t)=[a/(a^2-1)]*[a^t-1/(a^t)]
所以f(x)=[a/(a^2-1)]*[a^x-1/(a^x)]
(2)任取x属于R,则-x属于R
f(-x)=[a/(a^2-1)]*{a^(-x)-1/[a^(-x)]}
=[a/(a^2-1)]*[1/(a^x)-a^x]
=-f(x)
所以f(x)是奇函数
任取x1,x2属于R,且x1 f(x1)-f(x2)=[a/(a^2-1)]*[a^x1-1/(a^x1)]-[a/(a^2-1)]*[a^x2-1/(a^x2)]
=[a/(a^2-1)]*{[a^x1-1/(a^x1)]-[a^x2-1/(a^x2)]}
=[a/(a^2-1)]*{(a^x1-a^x2)+[1/(a^x2)-1/(a^x1)]}
=[a/(a^2-1)]*{(a^x1-a^x2)+(a^x1-a^x2)/[a^(x1+x2)]}
=[a/(a^2-1)]*(a^x1-a^x2)*{1+1/[a^(x1+x2)]}
(a)0 所以a/(a^2-1)<0,a^x1>a^x2
所以f(x1)-f(x2)<0
(b)a>1,x1 所以a/(a^2-1)>0,a^x1 所以f(x1)-f(x2)<0
所以f(x1) 所以f(x)是增函数
(3)因为f(1-m)-f(1-m^2)<0
所以f(1-m) 因为f(x)是增函数,x属于(-1,1)
所以-1<1-m<1-m^2<1
所以0

回答2:

1.把X=a的x次带入f(log(a)X)得到f(x)=(a/a^2-1)*(a^x-(a的-x次))
把f(-x)带入a^x-(a的-x次)得-f(x)所以是奇函数 系数不用管的但写过程的时候要加上去
2.在定义域上取x1和x2且0小于x1小于x1
f(x1)-f(x2)=(a/a^2-1)*{[(x1*x2+1)*(x1-x2)]/x1*x2}
(x1*x2+1)*(x1-x2)]/x1*x2}小于0的
所以要根据a/a^2-1的正负性来确定单调性若a/a^2-1大于0则函数为增函数若小于0则反之
3.有点麻烦我就不写了只能帮到这了

回答3:

希望你认真看
1.令y=logx.则x=a的y次方。f(y)=a/(a*a-1)(a的y次方减a的-y次方)
所以f(x)=a/(a*a-1)(a的x次方减a的-x次方)
2.f(x)de定义域是R。f(x)=-f(-x).
f(x)是奇函数。
3.f(x)的导数=a/(a*a-1)(a的x次方加a的-x次方)
当a/(a*a-1)>0.a>1时。f(x)的导数>0.f(x)为增函数。
1-m<1-m的平方
-1<1-m<1
-1<1-m的平方<1
解得0当a/(a*a-1)<0.01-m>1-m的平方
-1<1-m<1
-1<1-m的平方<1
解得1

回答4:

.把X=a的x次带入f(log(a)X)得到f(x)=(a/a^2-1)*(a^x-(a的-x次))
把f(-x)带入a^x-(a的-x次)得-f(x)所以是奇函数 系数不用管的但写过程的时候要加上去
.在定义域上取x1和x2且0小于x1小于x1
f(x1)-f(x2)=(a/a^2-1)*{[(x1*x2+1)*(x1-x2)]/x1*x2}
(x1*x2+1)*(x1-x2)]/x1*x2}小于0的
所以要根据a/a^2-1的正负性来确定单调性若a/a^2-1大于0则函数为增函数若小于0则反之
后头自己想啊