1/1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+…1/(1+2+3+4+5+…n)
=2{1/(1×2)+1/(2×3)+…+1/[n(n+1)]}
=2[1-1/2+1/2-1/3+…+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
将100代入得到
式子=200/101
she f(n)=1+2+.......+n
即f(n)=(1+n)/2
由题知道s=f(1)+f(2)+....f(n)-1
s=(n/2+1/2+2/2+......n/2)-1
s=n/2+(1+n)/4=(3n-3)/4
希望对你有所帮助
s(100)=297/4