矩阵乘积的秩小于等于任何一个因子的秩

2024-11-25 15:08:05
推荐回答(1个)
回答1:

此题不需要用那个结论也能证明出来啊,必须用吗?
证:由于K是满秩方阵,因此可逆,存在K逆,等式两边同时左乘K逆,得
K逆( )=( ),第一个括号里是beta那个向量组,第二个括号里是alpha那个向量组
这样就说明alpha那个向量组可由beta那个向量组线性表示,因此两向量组可以互相线性表示,所以两向量组等价,由于等价向量组秩相同,因此beta那个向量组的秩也是s,因此beta向量组线性无关。