利用Darboux定理的结论“导函数具有介值性”推出没有跳跃型间断点是很容易的,直接用反证法就行了,跳跃的局部不可能满足介值性。但是反过来等价性是不行的,没有跳跃型间断点不能保证介值性质,所以必须把导函数的条件加上去,这样一来就不能完全算做用“导函数没有跳跃型间断点”来推出Darboux定理了。如果你不会证明Darboux定理,那么我可以告诉你证法,对于f'(a)和f'(b)之间的任何实数t,构造连续函数g(x)=f(x)-tx,然后对区间(a,b)上的最值点用Fermat引理就行了。