有:1/2-1/3= 1/(2X3)< 1/(2X2) <1/(1X2) =1/1-1/2
同理:1/3-1/4= 1/(4X3)< 1/(3X3) <1/(3X2) =1/2-1/3
...... ...... ......
1/(n-1)-1/n = 1/[(n-1)Xn] < 1/(nXn)< 1/[nX(n+1)] = 1/n+1/(n+1)
左右累加有:1/2-1/(n+1) < 1/(2平方)+1/(3平方)+……+1/(n平方)< (n-1)/n < (n+1)/n
放缩法:
1/(2平方)+1/(3平方)+……+1/(n平方)<1/(1*2)+1/(2*3)+......+1/((n-1)*n)=1-1/2+1/2-1/3+...+1/n=1-1/n<(n+1)/n, 后半边得证;
1/(2平方)+1/(3平方)+……+1/(n平方>1/(2*3)+1/(3*4)+...+1/(n*(n+1))=1/2-1/3+1/3-1/4+...+1/n-1/(n+1)=1/2-1/(n+1), 前半边得证