已知x+y=9,xy=10,求x^2+y^2,x^3+y^3,x^4+y^4的值。

我今天晚上就要,跪求!各位帮帮我。O(∩_∩)O谢谢!
2024-12-28 03:49:50
推荐回答(6个)
回答1:

(x+y)²=81
x²+y²+2xy=81
所以x²+y²=81-2xy=61

x³+y³
=(x+y)(x²-xy+y²)
=9×(61-10)
=459

(x²+y²)²=61²
x^4+2x²y²+y^4=3721
所以x^4+y^4=3721-2(xy)²=3521

回答2:

x^2+y^2=(x+y)²-2xy=9²-2*10=61
x^3+y^3=(x+y)(x²-xy+y²)
=(x+y)[(x²+y²)-xy]
=9*(61-10)
=459
x^4+y^4
=(x^4+2x²y²+y^4)-2x²y²
=(x²+y²)²-2(xy)²
=61²-2*10²
=3721-200
=3521

回答3:

x²+y²=(x+y)²-2xy=10²-2*9=100-18=82
x^3+y^3=(x+y)(x²-xy+y²)=(x+y)[(x+y)²-3xy]=9*(9²-3*10)=9*(81-30)=9*49=441
x^4+y^4=x^4+2x²y²+y^4-2x²y²=(x²+y²)²-2x²y²=82²-2*10²=6524

望采纳~谢谢

回答4:

(x+y)^2=x^2+y^2+2xy=81

x^2+y^2=81-2xy=61

x^3+y^3=(x+y)(x^2+y^2-xy)=9*(61-10)=459

x^4+y^4=(x^2+y^2)^2-2(xy)^2=61^2-2*100=3521

回答5:

1、x²+y²=(x+y)²-2xy=9²-20=61
2、x³+y³=(x+y)(x²-xy+y²)=9×(61-10)=459
3、x^4+y^4=(x²+y²)²-2(xy)²=61²-200=3521

回答6:

x²+y²=(x+y)²-2xy=81-20=61
x ³+y³=(x+y)(x²-xy+y²)=9(61-10)=459
x^4+y^4=(x²+y²)²-2x²y²=61²-200=3721-200=3521