An=n(n+1)(n+2)=n³+3n²+2nSn=A1+A2+A3+…An=(1³+3×1²+2×1)+(2³+3×2²+2×2)+(3³+3×3²+2×3)+…(n³+3n²+2n)=(1³+2³+3³+…n³﹚+3×﹙1²+2²+3²+…n²﹚+2×﹙1+2+3+…n﹚=[n(n+1)/2]²+3×[n(n+1)(2n+1)]/6 +[n﹙n+1﹚]∕2