已知函数f(x)=1-2sin^2(x+π⼀4)+2sin(x+π⼀4)cos(x+π⼀4)

2024-12-22 00:49:06
推荐回答(1个)
回答1:

f(x)=1-2sin^2(x+π/4)+2sin(x+π/4)cos(x+π/4)
=cos(2x+π/2)+sin(2x+π/2)
=√2[√2/2cos(2x+π/2)+√2/2sin(2x+π/2)]
=√2[sin(2x+π/2+π/4)]
=√2sin(2x+3π/4)
(1) 最小正周期为T=2π/ω=2π/2=π
(2) 函数的单调区间为:
在-π/2≤2x+3π/4≤π/2上,即-5π/8≤x≤-π/8上为单调递增函数,增区间为[-5π/8,-π/8]
在π/2≤2x+3π/4≤3π/2上,即-π/8≤x≤3π/8上为单调递减函数,减区间为[-π/8,3π/8]
(3) 当x∈[-3π/8,π/8]时,
在[-3π/8,-π/8]上为增函数,有最大值为f(-π/8)=√2,最小值为f(-3π/8)=0
在[-π/8,π/8]上为减函数,有最大值为f(-π/8)=√2,最小值为f(π/8)=0
∴函数f(x)在[-3π/8,π/8]的值域为[0,√2]

希望对你有帮助