分段函数不一定是初等函数这句话是对的。
因为初等函数是指五种基本函数经有限次的运算或复合而来。而分段函数甚至可以每一个分段上使用超越函数。
一切初等函数在其「定义区间」内都是连续的。
定义区间,顾名思义,在某个区间上的函数都是有定义的。孤立的点构不成区间。
“初等函数在其定义区间内可导”这句话是错的。y=|x|=√(x^2),这是一个初等函数,定义区间为(-∞,+∞),但在x=0处是不可导的。
高等数学中提到初等函数在定义区间(不是定义域)一定连续,函数如果在某些孤立的点有定义,那么这些点是在其定义域内的,但是这些孤立的点是不在其定义区间内的。总结就是:基本初等函数在其定义域内连续;初等函数在其定义区间内连续。
初等函数简介:
由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmic function)、三角函数(trigonometric function)。
反三角函数(inverse trigonometric function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)
一定不是,因为初等函数是由基本初等函数经过有限次四则运算和复合步骤而成的函数,由于基本初等函数在其定义域内有共同表达式(即解析式),所以,初等函数在其定义域内有共同表达式(即解析式),由此可知,分段函数一定不是初等函数。
非也。当然有例外,如分段函数
f(x) = x,x>=0,
= -x,x<0,
也就是
f(x) = |x|,
可以表示为
f(x) = (x^2)^(1/2),
所以是初等函数。
也不一定,因为有些分段函数虽然形式强是分段来表示的,但实际上可以合并成一个解析式,例如:y=2-x,x<=1 ;x,x>1 就可以合并成一个式子