∵a^2+b^2+c^2-ab-bc-ca
=2*(a^2+b^2+c^2-ab-bc-ca )/2
=((a^2-2ab+b^2)+(a^2-2ac+c^2)-(b^2-2bc+c^2))/2
=((a-b)^2+(a-c)^2-(b-c)^2)/2
=((a-b)^2+(a-c)^2-((a-b)-(a-c))^2)/2
展开得到
=2*(a-b)^2+2*(a-c)^2-2(a-b)(a-c)
又a-b=1/(2-根号3)=2+根号3,
a-c=1/(2+根号3)=2-根号3,
将已知代入,得:
(2-√3)^2+(2+√3)^2-(2-√3)(2+√3)
=13
三个分别平方,再相加,再除以二。
a-b=1/(2-根号3)=2+根号3,a-c=1/(2+根号3)=2-根号3
∴b-c=-2×根号3
a^2+b^2+c^2-ab-bc-ca=(2a^2+2b^2+2c^2-2ab-2bc-2ca)/2
=[(a-b)^2+(b-c)^2+(a-c)^2]/2=13
∵a^2+b^2+c^2-ab-bc-ca
=(a^2-2ab+b^2)+(a^2-2ac+c^2)-(a^2-ab-ac+bc)
=(a-b)^2+(a-c)^2-(a(a-b)-c(a-b))
=(a-b)^2+(A-c)^2-(a-b)(a-c)
将已知代入,得:
(1/(2-√3))^2+(1/(2+√3))^2-(1/2-√3)(1/2+√3)
=13
a-b=1/(2-根号3)=2+根号3,a-c=1/(2+根号3)=2-根号3
所以b-c=-2*根号3
a^2+b^2+c^2-ab-bc-ca=(2a^2+2b^2+2c^2-2ab-2bc-2ca)/2
=[(a-b)^2+(b-c)^2+(a-c)^2]/2=13
谢谢!