估计原题应该是让求:(1)BM/(AB+BC)的值; (2)AM/(BC-AB)的值.
解:延长CD,交BA的延长线于F.
∠FBD=∠CBD;BD=BD;∠BDC=∠BDF=90度.则⊿BDC≌⊿BDF(ASA),得CD=FD;BC=BF.
DM⊥BF,AC⊥BF,则DM∥AC,得FM/MA=FD/CD=1,即FM=MA.
(1)BM/(AB+BC)=BM/(AB+BF)=BM/(2AB+AF)=BM/(2AB+2AM)=BM/(2BM)=1/2;
(2)AM/(BC-AB)=AM/(BF-AB)=AM/AF=1/2.