y=(2x²-2x+2+1)/(x²-x+1)=(2x²-2x+2)/(x²-x+1)+1/(x²-x+1)=2+1/(x²-x+1)x²-x+1=(x-1/2)²+3/4≥3/4所以0<1/(x²-x+1)≤4/32<2+1/(x²-x+1)≤10/3所以值域(2,10/3]
解:对函数式进行配方得到:y=-x2-2x+3=-(x+1)2+4,∵函数的定义域是R,于是可得函数的最大值为4,从而函数的值域为:(-∞,4].故答案为:(-∞,4].