f'(x)=1/x-1/x^2+a1>单调递增,1/x-1/x^2+a≥0恒成立,则a≥1/x^2-1/x令g(x)=1/x^2-1/x则g‘(x)=-2/x^3+1/x^2=(x-2)/x^3≥0故最大值为x趋向无穷大时,即x→+∞时,此时g(x)=0,则a≥02>单调递减,0≥1/x-1/x^2+a恒成立,即g(x)最小值≥a,而由上可得g(x)≥g(2)=1/4-1/2=-1/4则-1/4≥a综上所述,a≥0或a≤-1/4