设函数f(x)=(sinwx+coswx)^2+2cos^2wx-2(w>0)的最小正周期为2π⼀3 1求w的值

2024-12-31 12:12:30
推荐回答(1个)
回答1:

f(x)=(sinwx+coswx)^2+2cos^2wx-2
=1+ sin2wx+2cos^2wx-2
=sin2wx+(2cos^2wx-1)
=sin2wx+ cos2wx
=√2 sin(2wx+π/4),
最小正周期为2π/(2w) =2π/3, w=3/2.

f(x)=√2 sin(3x+π/4),
函数y=g(x)的图像由y=f(x)的图像向右平移π/2个单位长度得到,
所以g(x)= √2 sin(3(x-π/2)+π/4)
= √2 sin(3x-3π/2+π/4)
=√2cos(3x+π/4)
x属于[-π/3,π/12],
3x+π/4属于[-3π/4, π/2],
所以cos(3x+π/4) 属于[-√2/2,1].
函数y=g(x)的值域是[-1, √2].