y=x/(x^2+x+1) =1/(x+1/x+1)令t=x+1/x+1,则y=1/t由基本不等式t>=2+1=3所以y的值域为(0,1/3]
x^2+x+1≠0(x+1/2)²+3/4>0∴x∈R
-1<=y<=1/3