1. f(x)=2sin(x+θ/2)cos(x+θ/2)+2√3cos^2(x+θ/2)-√3,
=sin(2x+θ)+√3cos(2x+θ)+√3-√3
=2[(1/2)sin(2x+θ)+(√3/2)cos(2x+θ)
=2sin(2x+θ+π/3)
若函数f(x)为偶函数,则f(-x)=f(x)
即2sin(-2x+θ+π/3)=2sin(2x+θ+π/3)
所以-2x+θ+π/3+2x+θ+π/3=π
解得θ=π/6
2. 已知函数 f(x)=sin(ωx+θ) (ω>0,0≤θ≤兀)是R上的偶函数
则f(-x)=sin(-ωx+θ)=sin(ωx+θ)
-ωx+θ+ωx+θ=π
解得θ=π/2
图像关于点M(3兀/4,0)对称
则f(3π/4)=sin(3ωπ/4+π/2)=0
3ωπ/4+π/2=2kπ (1)
取k=1 (1)解得ω=2
3. √x>ax+1.5
则a(√x)²-√x+1.5<0 (1)
已知其解集是4
即(√x-2)(√x-√m)<0
(√x)²-(2+√m)√x+2√m<0 (2)
(1)(2)等价,于是a(2+√m)=1 2a√m=1.5
联立解得a=1/8 m=36
所以a+m=1/8+36=36又1/8