高数问题(关于单调性的证明)

2024-12-13 18:08:55
推荐回答(1个)
回答1:

F'(x)=[f'(x)x-f(x)]/x^2,只在证明在(0,a)内f'(x)x-f(x)>0即可.
令g(x)=f'(x)x-f(x),则g(0)=0
g'(x)=f''(x)x+f'(x)-f'(x)=f''(x)x,f'(x)单调递增,所以f''(x)>0,所以在(0,a)内g'(x)>0,即g(x)是增函数,g(0)=0,x>0时g(x)>0,得证.