1、若求 cos(α-π/6),则由于sin^2 (α-π/6)+cos^2 (α-π/6)=1,故cos^2 (α-π/6)=1-4/9=5/9
又α∈(0 ,π/2),所以cos(α-π/6)=(根号15)/3;
若求cosα,则由于sin(α-π/6)=2/3,即sinαcosπ/6-cosαsinπ/6=(根号3/2)sinα-(1/2)cosα=2/3
又sin^2 α+cos^2 α=1,得cosα=-1/3+(根号15)/2;
2、cos24°cos36°-cos66°cos54°
=cos24°cos36°-cos(90°-24°)cos(90°-36°)
=cos24°cos36°-sin24°sin36°
=cos(24°+36°)
=cos60°
=1/2