计算4⼀(1×2×3)+5⼀(2×3×4)+6⼀(3×4×5)+……+11⼀(8×9×10)=?

2024-12-12 02:06:07
推荐回答(1个)
回答1:

首先要拆项:
4/(1×2×3)=1/(1×2×3)+1/(1×2)=(1/2)*(1+1/3-2*1/2)+(1-1/2);
5/(2×3×4)=1/(2×3×4)+1/(2×3)=(1/2*)*(1/2+1/4-2*1/3)+(1/2+1/3);
。。。
11/(8×9×10)=1/(8×9×10)+1/(8×9)=(1/2)*(1/8+1/10-2*1/9)+(1/8-1/9) ;
然后分组求和,拆开的所有后项相加,削项:
原式=(1/2)*(1-1/2+1/10)+(1-1/9)=107/90;
参考公式:1/[n*(n+1)]=[ (n+1) - n ] / [ n*(n+1)]= (n+1) / [ n*(n+1)] - n / [ n*(n+1)]
= 1/n - 1/(n+1);

1/[ n*(n+1)*(n+2) ]=(1/n)*[ 1/(n+1)-1/(n+2) ]=1/n - 1/(n+1) + (1/2)*[ (1/n) - 1/(n+2) ]
=( 1/2 )*{ 1/n+1/ ( n+2 ) - 2 * [ 1 / ( n+1 ) ] };
在这里书写看过去是比较乱!不如纸面上看过去明白!