不等式log2(x+1)≤log4(1-x)的解集

2024-12-26 19:46:01
推荐回答(3个)
回答1:

先确定定义域 -1log2(x+1)≤log4(1-x)=log2(1-x)^2
x+1≤(1-x)^2=x^2-2x+1
即x(x-3)>=0解得x<=0或x>=3
结合定义域知解集为{x|-1

回答2:

lg(x+1)/lg2<=lg(1-x)/lg4
2lg(x+1)/lg2<=lg(1-x)
(x+1)^2<=(1-x)
0>=x>=-3
x+1>0,x>-1
1-x>0,x<1
综合0>=x>-1

回答3:

log2(x+1)≤log4(1-x)
log2(x+1)≤log2(1-x)/2
2log2(x+1)≤log4(1-x)
log2(x+1)^2≤log4(1-x)
所以x+1>0
1-x>0
(x+1)^2≤1-x
解不等式组得:-1所以不等式log2(x+1)≤log4(1-x)的解集是{x|-1