1.有 3 个人去投宿,一晚 30 元.三个人每人掏了 10 元凑够 30 元交给了老板. 后来老板说今天优惠只要 25 元就够了,拿出 5 元命令服务生退还给他们, 服务生偷偷藏起了 2 元,然后,把剩下的 3 元钱分给了那三个人,每人分到 1 元. 这样,一开始每人掏了 10 元,现在又退回 1 元,也就是 10-1=9, 每人只花了 9 元钱,3 个人每人 9 元, 3 X 9 = 27 元 + 服务生藏起的 2 元=29 元,还有一元钱去了哪里??? 此题在新西兰面试的时候曾引起巨大反响.有谁知道答案呢?
答案:每人所花费的 9 元钱已经包括了服务生藏起来的 2 元(即优惠价 25 元+服务生私藏 2 元=27 元=3*9 元)因此,在计算这 30 元的组成时不能算上服务生私藏的那 2 元钱,而应该 加上退还给每人的 1 元钱。即:3*9+3*1=30 元正好!还可以换个角度想..那三个人一共出了 30 元,花了 25 元,服务生藏起来了 2 元,所以每人花了九元,加上分得的 1 元,刚好是 30 元。因此这一元钱就找到了。 小结:这道题迷惑人主要是它把那 2 元钱从 27 元钱当中分离了出来,原题的算法错误的认为 服务员私自留下的 2 元不包含在 27 元当中,所以也就有了少 1 元钱的错误结果; 而实际上私 自留下的 2 元钱就包含在这 27 元当中,再加上退回的 3 元钱,结果正好是 30 元。
2.有个人去买葱 问葱多少钱一斤 卖葱的人说 1 块钱 1 斤 这是 100 斤 要完 100 元 买葱的人又问 葱白跟葱绿分开卖不 卖葱的人说 卖 葱白 7 毛 葱绿 3 毛 买葱的人都买下了 称了称葱白 50 斤 葱绿 50 斤 最后一算葱白 50*7 等于 35 元 葱绿 50*3 等于 15 元 35+15 等于 50 元 买葱的人给了卖葱的人 50 元就走了 而卖葱的人却纳闷了 为什么明明要卖 100 元的葱 而那个买葱的人为什么 50 元就买走了呢? 你说这是为什么?
答案:1 块钱一斤是指不管是葱白还是葱绿都是一块钱一斤, 当他把葱白和葱绿分开买时, 葱 白 7 毛 葱绿 3 毛,实际上其重量是没有变化,但是单价都发生了变化,葱白少收了 3 毛每 斤,葱绿少收了 7 毛每斤,所以最终 50 元就买走了。
3..有口井 7 米深 有个蜗牛从井底往上爬 白天爬 3 米 晚上往下坠 2 米 问蜗牛几天能从井里爬出来? 答案:5 天。 这道题很多人想都不想就说是七天..其实用一个很简单的方法.. 你拿张纸画一下就出来了..这道题特简单...
4..一毛钱一个桃 三个桃胡换一个桃 你拿 1 块钱能吃几个桃? 答案:1 块钱买 10 个,吃完后剩 10 个核。再换 3 个桃,吃完后剩 4 个核。 再换 1 个桃,吃完后剩 2 个核。朝卖桃的赊 1 个,吃完后剩 3 个核。把核都给卖桃的,顶赊 的那个。 所以,你一共吃了 10+3+1+1=15 个桃。 这是大家都知道的方法..还有个方法.. 不要一次买十个..分开买.. 第一次三个..第二次两个..第三次两个..这样....很简单..也是 15 个。
5.有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部 没有砝码的天秤称三次, 将那个重量异常的球找出来, 并且知道它比其它十一个球较重还是 较轻。 答案:分成 A B C 3 组,每组 4 颗, 第一次称可能有 3 种结果.. A>B 或 A=B 或 A6.一个商人骑一头驴要穿越 1000 公里长的沙漠, 去卖 3000 根胡萝卜。 已知驴一次性可驮 1000 根胡萝卜,但每走 1 公里又要吃掉 1 根胡萝卜。问:商人最多可卖出多少胡萝卜? 答案:534 根。 首先驼 1000 根萝卜前进 x1 公里放下 1000-2*x1 根后带走剩下的 x1 根返回; 然后驼 1000 根萝卜前进,至 x1 公里处取 x1 根萝卜,让驴子恰好驼 1000 根萝卜; 继续前进至距起点 x2 公里处,放下 1000-2*(x2-x1)根萝卜再返回, 到 x1 公里处恰好把萝卜吃完,再取 x1 根萝卜返回起点; 最后驼走一千根萝卜,行至 x1、x2 处依次取走所有萝卜,再行至终点。 x1、x2 处剩余的萝卜分别小于等于 x1 和(x2-x1) ,在这个不等式约束条件下,求得两处剩 余萝卜的最大值即可,因为实际上两处剩余的萝卜个数就是最终能够到达终点的萝卜个数。 最后求的 x1=200,x2=1600/3。 驴走过的总路程是 2*x1+2*x2+1000=2466+2/3,按题意是走完一公里才吃一根萝卜, 也就是吃 掉的萝卜总数为里程数向下取整,为 2466,所以最终剩下能卖掉的萝卜是 3000-2466=534 根了。
7.话说某天一艘海盗船被天下砸下来的一头牛给击中了,5 个倒霉的家伙只好逃难到一个孤 岛,发现岛上孤零零的,幸好有有棵椰子树,还有一只猴子!大家把椰子全部采摘下来放在一起, 但是天已经很晚了,所以就睡觉先. 晚上某个家伙悄悄的起床,悄悄的将椰子分成 5 份,结果发现多一个椰子,顺手就给了幸运的猴 子,然后又悄悄的藏了一份,然后把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉 了. 过了会儿,另一个家伙也悄悄的起床,悄悄的将剩下的椰子分成 5 份,结果发现多一个椰子,顺 手就又给了幸运的猴子,然后又悄悄滴藏了一份,把剩下的椰子混在一起放回原处,最后还是 悄悄滴回去睡觉了. 又过了一会 ...... 又过了一会 ... 总之 5 个家伙都起床过,都做了一样的事情。 早上大家都起床,各自心怀鬼胎的分椰子了,这个 猴子还真不是一般的幸运,因为这次把椰子分成 5 分后居然还是多一个椰子,只好又给它了. 问题来了,这堆椰子最少有多少个?
答案:这堆椰子最少有 15621 第一个人给了猴子 1 个,藏了 3124 个,还剩 12496 个; 第二个人给了猴子 1 个,藏了 2499 个,还剩 9996 个; 第三个人给了猴子 1 个,藏了 1999 个,还剩 7996 个; 第四个人给了猴子 1 个,藏了 1599 个,还剩 6396 个; 第五个人给了猴子 1 个,藏了 1279 个,还剩 5116 个; 最后大家一起分成 5 份,每份 1023 个,多 1 个,给了猴子。
8.某个岛上有座宝藏,你看到大中小三个岛民,你知道大岛民知道宝藏在山上还是山下,但 他有时说真话有时说假话, 只有中岛民知道大岛民是在说真话还是说假话, 但中岛民自己在 前个人说真话的时候才说真话, 前个人说假话的时候就说假话, 这两个岛民用举左或右手的 方式表示是否,但你不知道哪只手表示是,哪只手表示否,只有小岛民知道中岛民说的是真 还是假,他用语言表达是否,他也知道左右手表达的意思。但他永远说真话或永远说假话, 你也不知道他是这两种类型的哪一种, 你能否用最少的问题问出宝藏在山上还是山下? (提 示:如果你问小岛民宝藏在哪,他会反问你怎么才能知道宝藏在哪?等于白问一句) 答案:为了方便,我们把大中小岛民分别记为 ABC(其实都没用到 C) 第一个问题问 A:宝藏在山上吗? 第二个问题问 B:A 答对了吗? 第三个问题问 B:1+1=2 对吗? 好,现在第一问我们不知道 A 回答的是“是”还是“否” ,也不知道 A 回答的真还是假,只 是知道 A 举的手是左手还是右手,那先不管他。 看第二问,不管 A 回答的意思是“是”还是“否”,只要 A 的回答是对的,B 在第二问的时 候也答对,所以他应该回答“是”(如果他会汉语的话). 还是一样的,不管 A 回答的意思是“是”还是“否”,只要 A 的回答是错的,B 在第二问的 时候也答错,所以他还是应该回答“是” 。 所以无论何种情况 B 举的那只手都是“是”的意思; 第三问: 现在知道左右手是什么意思了,那只要知道 B 刚才的回答是真还是假, 就能确定 A 是真还是假了,因为他们两个的真假必定是一样的。所以随便找个题目来问就可以了,比如 1+1=2 是吗? 还有个方法: 首先随便问一个人:你是不是说真话 那个人一定会举起代表 是 的那只手 因为如果他说的是真话,他会举起 代表 是 的手 他说的是假话 他也会举起 代表 是 的手 所以可以由此得出、那只手代表 是 然后问中岛民:大岛民说 宝藏是在山上吗? 中岛民回答的一定是正确答案 也就是说,中岛民说在哪宝藏就在哪
因为如果中岛民说 是 若大岛民说的是真话、那么中岛民说的也是真话、那么宝藏就一定在山上 若大岛民说的是假话,那么中岛民说的也是假话,那么其实大岛民是说,宝藏在山下的,但 是因为这是假的,所以宝藏还是在山上的。
9.说一个屋里有多个桌子,有多个人? 如果 3 个人一桌,多 2 个人。 如果 5 个人一桌,多 4 个人。 如果 7 个人一桌,多 6 个人。 如果 9 个人一桌,多 8 个人。 如果 11 个人一桌,正好。 请问这屋里多少人 答案:2519 个人。只要是 315×(11X+8)-1 都可以 因为 9 是 3 的 3 倍所以 3 不算 根据题目可以得出规律 是 5、 7 、9 的倍数少一 于是将 5×7×9=315 然后算出 315 的倍数除以 11 的周期 得出周期为:7 3 10 6 2 9 5 1 8 4 0 共 11 个,因为是除以 11 的嘛,有简便算法不用一个个试 的 因为 315-1 要被 11 整除..所以取周期余 1 的。
10.有人想买几套餐具,到餐具店看了后,发现自己带的钱可以买 21 把叉子和 21 把勺子, 或者 28 把小刀。如果他买的叉子,勺子,小刀数量不统一,就无法配成套,所以他必须买 同样多的叉子,勺子,小刀,并且正好将身上的钱用完。如果你是这个人,你该怎么办? 答案:可以买 12 副餐具。 一把勺子和叉子的钱是 1/21 一把小刀的钱是 1/28.. 一套的总价是 1/21+1/28=1/12..
所以可以买 12 套..所有钱都用完了。
11.一个小偷被警查发现 警查就追小偷,小偷就跑 跑着着跑着,前面出现条河 这河宽 12 米,河在小偷和警查这面有颗树 树高 12 米,树上叶子都光了 小偷围着个围脖长 6 米 问小偷如何过河跑? 答案:把围脖系在树顶上,小偷就吊着围脖荡秋千, 围脖和树干成 45 度角的时候就放手,就会把小偷甩过河了。 另外还参考了一下别人的答案 有人说根据题目可以得出当时是冬天.. 所以..水面结冰..跑了过去...
、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.
3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
石头听了,感谢不尽。那僧便念咒书符,大展幻术,将一
块大石登时变成一块鲜明莹洁的美玉,且又缩成扇坠大小的可
佩可拿。那僧托于掌上,笑道:“形体倒也是个宝物了!还只
没有实在的好处,须得再镌上数字,使人一见便知是奇物方妙
。然后携你到那昌明隆盛之邦,诗礼簪缨之族,花柳繁华地,
温柔富贵乡去安身乐业。”石头听了,喜不能禁,乃问:“不
知赐了弟子那几件奇处,又不知携了弟子到何地方?望乞明示
,使弟子不惑。”那僧笑道:“你且莫问,日后自然明白的说
着,便袖了这石,同那道人飘然而去,竟不知投奔何方何舍。
后来,又不知过了几世几劫,因有个空空道人访道求仙,忽从
这大荒山无稽崖青埂峰下经过,忽见一大块石上字迹分明,编
述历历。空空道人乃从头一看,原来就是无材补天,幻形入世
蒙茫茫大士渺渺真人携入红尘,历尽离合悲欢炎凉世态的一段
此系身前身后事,倩谁记去作奇传?诗后便是此石坠落之乡投
胎之处,亲自经历的一段陈迹故事。其中家庭闺阁琐事,以及
闲情诗词倒还全备,或可适趣解闷,然朝代年纪、地舆邦国反
空空道人遂向石头说道:“石兄,你这一段故事,据你自己说
有些趣味,故编写在此,意欲问世传奇。据我看来,第一件,
无朝代年纪可考;第二件,并无大贤大忠理朝廷治风俗的善政
,其中只不过几个异样女子,或情或痴,或小才微善,亦无班
姑蔡女之德能。我纵抄去,恐世人不爱看呢。”石头笑答道:
“我师何太痴耶!若云无朝代可考,今我师竟假借汉唐等年纪
添缀,又有何难?但我想,历来野史,皆蹈一辙,莫如我这不
此套者,反倒新奇别致,不过只取其事体情理罢了,又何必拘
拘于朝代年纪哉!再者,市井俗人喜看理治之书者甚少,爱适
趣闲文者特多。历来野史,或讪谤君相,或贬人妻女,奸淫凶
恶,不可胜数。更有一种风月笔墨,其淫秽污臭,屠毒笔墨,
坏人子弟,又不可胜数。至若佳人才子等书,则又千部共出一
套,且其中终不能不涉于淫滥,以致满纸潘安、子建、西子
君、不过作者要写出自己的那两首情诗艳赋来,故假拟出男女
二人名姓,又必旁出一小人其间拨乱,亦如剧中之小丑然。且
鬟婢开口即者也之乎,非文即理。故逐一看去,悉皆自相矛盾
,大不近情理之话,竟不如我半世亲睹亲闻的这几个女子,虽
不敢说强似前代书中所有之人,但事迹原委,亦可以消愁破闷
;也有几首歪诗熟话,可以喷饭供酒。至若离合悲欢,兴衰际
遇,则又追踪蹑迹,不敢稍加穿凿,徒为供人之目而反失其真
传者。今之人,贫者日为衣食所累,富者又怀不足之心,纵然
一时稍闲,又有贪淫恋色,好货寻愁之事,那里去有工夫看那
理治之书?所以我这一段故事,也不愿世人称奇道妙,也不定
要世人喜悦检读,只愿他们当那醉淫饱卧之时,或避事去愁之
际,把此一玩,岂不省了些寿命筋力?就比那谋虚逐妄,却也
省了口舌是非之害,腿脚奔忙之苦。再者,亦令世人换新眼目
不比那些胡牵乱扯,忽离忽遇,满纸才人淑女、子建文君红娘
空空道人听如此说,思忖半晌,将《石头记》再检阅一遍,因
见上面虽有些指奸责佞贬恶诛邪之语,亦非伤时骂世之旨;及
至君仁臣良父慈子孝,凡伦常所关之处,皆是称功颂德,眷眷
无穷,实非别书之可比。虽其中大旨谈情,亦不过实录其事,
又非假拟妄称,一味淫邀艳约、私订偷盟之可比。因毫不干涉
时世,方从头至尾抄录回来,问世传奇。从此空空道人因空见
色,由色生情,传情入色,自色悟空,遂易名为情僧,改《石
头记》为《情僧录》。东鲁孔梅溪则题曰《风月宝鉴》。后因
曹雪芹于悼红轩中披阅十载,增删五次,纂成目录,分出章回
当日地陷东南,这东南一隅有处曰姑苏,有城曰阊门者,最是
红尘中一二等富贵风流之地。这阊门外有个十里街,街内有个
仁清巷,巷内有个古庙,因地方窄狭,人皆呼作葫芦庙。庙旁
住着一家乡宦,姓甄,名费,字士隐。嫡妻封氏,情性贤淑,
深明礼义。家中虽不甚富贵,然本地便也推他为望族了。因这
1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?
答案:2元
3、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量。
答案:先称3只,再拿下一只,称量后算差。
4、有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背回家,
每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香
蕉?
答案:25根
先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。
旁门左道话趣味 4=5 ? 大象的重量=蚊子的重量 ?
答案: 4=5 的证明
解:
16-36=25-45
4²-2 x4 x9/2=5²-2 x5x 9/2
两边同时加上(9/2)² ,得:
4²-2 x4 x9/2 +(9/2)² =5²-2 x5 x9/2 +(9/2)²
根据差平方公式,(a-b)² =a²-2ab+b² ,得:
(4-9/2)² =(5-9/2)²
两边同时开方,得:
4-9/2=5-9/2
两边同时减去(-9/2),得:
4=5
这只是一种思维方法,在一定的层面上是对的,但……,这只是趣味
大象和蚊子一样重 (趣味题目)
大象和蚊子哪个重?当然是大象重,不过在计算过程中有时会得出令人莫名其妙的结果。
设大象体重为x千克,蚊子体重为y千克,平均体重为A千克。据此可列出等式
x+y=2A …………………(1)
等式可以变形,因此 x=2A-y ..............(2)
x-2A=-y ..............(3)
(2)×(3)又可得
x^2-2Ax= -2A+y^2 ………………(4)
等式两边加A^2,又可得
x^2-2Ax+A^2= y^2-2Ay+A^2
即:(x-A)^2=(y-A)^2………………(5)
(5)式两边开平方得
x-A = y –A …………………………(6)
∴x=y
这样我们就证明了大象和蚊子的体重一样。这个结论肯定是错误的。错在哪里呢?这就引导人们思考,结果终于发现错误出现在第(5)到第(6)步的推论。在这一过程中需要加注条件。
因为某数开平方时会出现正负根,即:
又因为y因而得y-A<0
于是有
所以(5)式到(6)式开平方后,应为
x-A=A-y而不是 x-A=y-A
如果我们在开平方时不对可能出现的各种情况加以说明,就会导致悖论的出现。实际上,在数学发展过程中,在许多地方不断地发现和弥补悖论所显示出来的裂缝,才使数学大厦越来越坚固稳定。悖论的出现并不可怕,从某种意义上说,它是推动数学进步发展的动力