奥数题目!急急急急急急急急急急急急急

2024-12-26 08:22:38
推荐回答(5个)
回答1:

1/(80*81)+ 1/(81*82)+ …… +1/(99*100)
=1/80-1/81+1/81-1/82+……+1/98-1/99+1/99-1/100
=1/80-1/100
=1/400
这类题一般情况下用“裂项法”。具体方法是
每项的分子相同,每项的分母是某两个数的积,求这些项的和。后一项的分母的第一个因式是前一个分母的第二个因式,因式与因式之间的差为定值。就可用此法。所以,下列的都可用:
1/1*2+1/2*3+……1/n*(n+1)=1-1/2+1/2-1/3+……+1/n-1/(n+1)=1-1/(n+1)
1/1*3+1/3*5+1/5*7……+1/97*99=(1-1/99)/2=49/99
1/1*4+1/4*7+1/7*11+……+1/100*103=(1-1/103)/3=34/103
1/1*9+1/9*17+1/17*25+1/25*33+1/33*41
=(1-1/9+1/9-1/17+……+1/33-1/41)/8=5/41
同时你注意,两个因式的差是几,就应乘上几分之一的系数或者说是除以几。

但是这道题目中是调和级数,没有部分和的公式,计算准确值没有任何好的办法,只能通分硬算。
利用数学软件,可得本题的结果是:
分子:
507090580800948324804067265393551329355551261786163426125537495264397468418630726791731753233434631909081217108861344400788042968304365796865699078349632444400293574630907152655744838915443995664908471136092578829737121268629718562694813803573988717725293516479647330402523437935718644743285290595887747826699416750843210919865688214260005664753064316981878398055386353592203801075401201799447642800800805427194339464923821829653949939608504297442562278330943268072721005987921444624996510963037379608422250378493732836142508939099454992227957769003829902272184389341817680997823228859920651953972720453459391921388875488343561422421441775421245035470818319208789810414702407874803308426181283871187726824429362357455491363445408689462539790731041142988512577810929434838014383049025235687489599781014737669899222785863100501988553761500065961707134133835907525296
分母:
147575971560004214167515926110910959154039364114823574124246000461914527658542221342892735221356393498040967787373958507841987262911496051590667501531330247838135978840974443799253538292640926269840668436150204200349824875106342825692216080195797882561278687544853408492239067897668276741020722024722920647043361291050258670152054452602340630932745172382890465777119545919256355735334085680330696670323581795898987569556701349947230648600924724829339703465619153667400785835767829015255912124437120483654244048802954353182627323647253464533187610294513012889059213560214079942586690820627448621251921400116373405117084193399206770968054536747884759653724084204389207798419572074824626227112973906822764943279686533643894351344307463662830610651081788025023698731546719066865315845423963070220368816149003349877146224784348331677667520210577535211126744546685023125

通项公式
Fn={[(1+ √5)/2]^(n+1)-[(1- √5)/2]^(n+1)}/√5
所以相邻两项的比例为
Fn/Fn+1={[(1+ √5)/2]^(n+1)-[(1- √5)/2]^(n+1)}/{[(1+ √5)/2]^(n+2)-[(1- √5)/2]^(n+2)}
利用简单的求极限知识,得到上面式子在n为无穷时的极限为
(√5-1)/2=0.618

回答2:

1/(80*81)+ 1/(81*82)+ …… +1/(99*100)
=1/80-1/81+1/81-1/82+……+1/98-1/99+1/99-1/100
=1/80-1/100
=1/400
这类题一般情况下用“裂项法”。具体方法是
每项的分子相同,每项的分母是某两个数的积,求这些项的和。后一项的分母的第一个因式是前一个分母的第二个因式,因式与因式之间的差为定值。就可用此法。所以,下列的都可用:
1/1*2+1/2*3+……1/n*(n+1)=1-1/2+1/2-1/3+……+1/n-1/(n+1)=1-1/(n+1)
1/1*3+1/3*5+1/5*7……+1/97*99=(1-1/99)/2=49/99
1/1*4+1/4*7+1/7*11+……+1/100*103=(1-1/103)/3=34/103
1/1*9+1/9*17+1/17*25+1/25*33+1/33*41
=(1-1/9+1/9-1/17+……+1/33-1/41)/8=5/41

回答3:

通项公式
Fn={[(1+ √5)/2]^(n+1)-[(1- √5)/2]^(n+1)}/√5
所以相邻两项的比例为
Fn/Fn+1={[(1+ √5)/2]^(n+1)-[(1- √5)/2]^(n+1)}/{[(1+ √5)/2]^(n+2)-[(1- √5)/2]^(n+2)}
利用简单的求极限知识,得到上面式子在n为无穷时的极限为
(√5-1)/2=0.618

回答4:

暂时没解,呵呵,太难了吧,绝对不等于1,那个胡扯,大于1,呵呵,要想出来恐怕很难列^_^。真是奥数题,还是你自己造的啊,如果你自己造的,根本就没有特殊解法的话,会害死好多脑细胞啊,你赔偿不哟
9楼的你辛苦了,哈哈,^_^,呵呵,现在变成8楼了

回答5:

俺才疏学浅 就知道通项是 1/(2n+1) 了 应该会有步骤分吧