△x=aT^2
作匀变速直线运动的物体
位移与时间的关系满足S(T)=V0T+(1/2)aT²,V0是初速度
则在第n个时间间隔t内,物体的位移表示为s(n)
s(n)
=S(n)-S((n-1)
=[V0nt+(1/2)a(nt)²]-[V0(n-1)t+(1/2)a[(n-1)t]²]
=V0t+(1/2)at²(2n-1)
於是得到
s(n)-s((n-1)
=[V0t+(1/2)at²(2n-1)]-[V0t+(1/2)at²(2(n-1)-1)]
=at²
即在连续相等的时间间隔内的位移之差为保持不变,都等於at²
△x=aT^2
把物理量都设出来,然后写t时间内的位移,再写2t的,3t的……
就可以发现规律了