已知a²-3a+1=0, 求(a⁴-7a²+6a+1)/(a²-a+1) 的值.
解:∵a²-3a+1=0,∴a²+1=3a,(a²+1)²=a⁴+2a²+1=9a²
故(a⁴-7a²+6a+1)/(a²-a+1)=[(a²+1)²-9a²+6a]/[(a²+1)-a]=(9a²-9a²+6a]/(3a-a)=6a/2a=3.
3 ,由已知有a²-3a=-1
a⁴-7a²+6a+1=a⁴-3a^3+3a^3-9a^2+2a^2+6a+1=a^2(a^2-3a)+3a(a^2-3a)+2a^2+6a+1
=-a^2-3a+2a^2+6a+1
=a^2+3a+1
a²-3a+1=0,所以a^2+1=3a, 所以a^2+3a+1=6a a²-a+1=2a
a⁴-7a²+6a+1/a²-a+1 =6a/2a=3