1、不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有:
(1) 对称性:a>bb(2) 传递性:若a>b,b>c,则a>c;
(3) 可加性:a>ba+c>b+c;
(4) 可乘性:a>b,当c>0时,ac>bc;当c<0时,ac
(1) 同向相加:若a>b,c>d,则a+c>b+d;
(2) 异向相减:,.
(3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd。
(4) 乘方法则:若a>b>0,n∈N+,则;
(5) 开方法则:若a>b>0,n∈N+,则;
(6) 倒数法则:若ab>0,a>b,则。
2、基本不等式
定理:如果,那么(当且仅当a=b时取“=”号)
推论:如果,那么(当且仅当a=b时取“=”号)
算术平均数;几何平均数;
推广:若,则
当且仅当a=b时取“=”号;
3、绝对值不等式
|x|<a(a>0)的解集为:{x|-a<x<a};
|x|>a(a>0)的解集为:{x|x>a或x<-a}。
如果a,b是正数,那么(a+b)/2≥(根号下ab),当且仅当a=b时,等号成立,我们称上述不等式为基本不等式。
若a,b∈R,则a平方+b平方≥2ab或ab≤(a平方+b平方)/2.
若a,b∈R,则(a平方+b平方)/2≥[(a+b)/2]的平方
若a,b∈R※,则a+b>=2(根号ab) 或ab≤[(a+b)/2]的平方
根号(ab)≤(a+b)/2
那么可以变为 a^2-2ab+b^2 ≥ 0
a^2+b^2 ≥ 2ab
均值不等式。