1、轮齿折断。
过载折断,因短时过载或冲击载荷而产生的折断。过载折断的断口一般都在齿根部位。断口比较平直,并且具有很粗糙的特征。
2、疲劳折断。
齿轮在工作过程中,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断轮齿。
齿面较小的直齿轮常发生全齿折断,齿面较大的直齿轮,因制造装配误差易产生载荷偏置一端,导致局部折断;斜齿轮和人字齿齿轮,由于接触线倾斜,一般是局部齿折断。
3、齿面点蚀。
由于齿面接触应力是按脉动循环变化的(其工作表面上任一点产生的接触应力系由零增加到一最大值),应力经多次反复后,轮齿表层下一定深度产生裂纹,裂纹逐渐发展扩大导致轮齿表面出现疲劳裂纹,疲劳裂纹扩展的结果是使齿面金属脱落而形成麻点状凹坑,这种现象就称为齿面疲劳点蚀。
4、齿面胶合。
胶合是比较严重的黏着磨损,一般发生在齿面相对滑动速度大的齿顶或齿根部位。互相啮合的轮齿齿面,在一定的温度或压力作用下,发生粘着,随着齿面的相对运动,粘焊金属被撕脱后,齿面上沿滑动方向形成沟痕,这种现象称为胶合。
胶合发生在高速重载齿轮传动中,使啮合点处瞬时温度过高,润滑失效, 致使相啮合两齿面金属尖峰直接接触并相互粘连在一起,造成热胶合;发生在重载低速齿轮传动中,不易形成油膜,或由于局部偏载使油膜破坏,会造成冷胶合。齿面一旦出现胶合,不但齿面温度升高,而且齿轮的振动和噪声也增大,导致失效。
5、齿面塑性变形。
塑性变形属于轮齿永久变形,是由于在过大的应力作用下,轮齿材料处于屈服状态而产生的齿面或齿体塑性流动所形成的。
当轮齿材料较软,载荷很大时,轮齿在啮合过程中,齿面油膜被破坏,摩擦力增大,而塑性流动方向和齿面所受摩擦力的方向一致,齿面表层的材料就会沿着摩擦力的方向产生塑性变形。
扩展资料
齿轮传动的不同失效形式在一对齿轮上面不大可能同时发生,但却是互相影响的。例如齿面的点蚀会加剧齿面的磨损,而严重的磨损又会导致轮齿折断。在一定条件下,由于轮齿折断、齿面点蚀失效形式是主要的。
因此,设计齿轮传动时,应根据实际工作条件分析其可能发生的主要失效形式,以确定相应的设计准则。
对于闭式软齿面(硬度≤350HBW)齿轮传动.润滑条件良好,齿面点蚀将是主要的失效形式,在设计时通常按齿面接触疲劳强度设计,再按齿根弯曲疲劳强度校核。
对于闭式硬齿面(硬度>350HBW)齿轮传动,抗点蚀能力较强,轮齿折断的司能性大,在设计计算时.通常按齿根弯曲疲劳强度设计,再按齿面接触疲劳强度校核。
开式齿轮传动,主要失效形式是齿面磨损。但由于磨损的机理比较复杂,尚无成熟的设计计算方法,故只能按齿根弯曲疲劳强度计算,用增大模数10%~20%的办法加大齿厚,使它有较长的使用寿命,以此来考虑磨损的影响。
参考资料来源:百度百科-齿轮传动
齿轮传动的失效主要发生在轮齿。常见的失效形式有:轮齿折断、齿面磨损、齿面点蚀、齿面胶合和塑性变形。
(1)轮齿折断
闭式传动中,当齿轮的齿面较硬时,容易出现轮齿折断。另外齿轮受到突然过载时,也可能发生轮齿折断现象。
提高轮齿抗折断能力的措施有:增大齿根过渡圆角半径及消除加工刀痕;增大轴及支承的刚性;采用合理的热处理方法使齿芯具有足够的韧性;进行喷丸、滚压等表面强化处理。
(2)齿面磨损
齿面磨损是开式齿轮传动的主要失效形式之一。改用闭式齿轮传动是避免齿面磨损的最有效方法。
(3)齿面点蚀
齿面点蚀是闭式齿轮传动的主要失效形式,特别是在软齿面上更容易产生。
提高齿面抗点蚀能力措施有:提高齿轮材料的硬度;在啮合的轮齿间加注润滑油可以减小摩擦,减缓点蚀。
(4)齿面胶合
对于高速重载的齿轮传动,容易发生齿面胶合现象。另外低速重载的重型齿轮传动也会产生齿面胶合失效,即冷胶合。
提高齿面抗胶合能力的措施:提高齿面硬度和降低齿面粗糙度值;加强润滑措施,如采用抗胶合能力高的润滑油,在润滑油中加入添加剂等。
(5)塑性变形
塑性变形一般发生在硬度低的齿面上;但在重载作用下,硬度高的齿轮上也会出现。
提高轮齿抗塑性变形能力的措施:提高轮齿齿面硬度;采用高粘度的或加有极压添加剂的润滑油等。
齿轮失效的主要形式有断齿、磨损、点蚀、胶合。
断齿:是在齿轮传动中由于各种以外原因,一个或多个轮齿折断使齿轮失效;
磨损:齿轮传动过程中,齿面上的相对滑动会引起磨损;
点蚀:齿轮传动过程中,齿轮接触面上各点的接触应力呈脉动循环变化,经过一段时间后,会由于接触面上金属的疲劳而形成细小的疲劳裂纹,裂纹的扩展造成金属剥落,形成点蚀;
胶合:当齿轮在高速、大载荷或润滑失效的情况下,两齿面直接接触形成局部高温,接触区出现较大面积粘连现象,为胶合。
合理润滑可以明显延缓或防止齿轮的失效。⑴闭式传动闭式传动的主要失效形式为齿面点蚀和轮齿的弯曲疲劳折断。当采用软齿面(齿面硬度≤350HBS)时,其齿面接触疲劳强度相对较低。因此,一般应首先按齿面接触疲劳强度条件,计算齿轮的分度圆直径及其主要几何参数(如中心距、齿宽等),然后再对其轮齿的抗弯曲疲劳强度进行校核。当采用硬齿面(齿面硬度>350HBS)时,则一般应首先按齿轮的抗弯曲疲劳强度条件,确定齿轮的模数及其主要几何参数,然后再校核其齿面接触疲劳强度。
⑵开式传动开式传动的主要失效形式为齿面磨粒磨损和轮齿的弯曲疲劳折断。由于目前齿面磨粒磨损尚无完善的计算方法,因此通常只对其进行抗弯曲疲劳强度计算,并采用适当加大模数的方法来考虑磨粒磨损的影响。
1)齿条扫齿或断齿,无法传动。
2)齿间间隙过大或严重磨损,传动精度不足。
折断
塑变
磨损
点蚀