已知函数f(X)=a的x次方+(x-2)⼀(x+1) (a>1),求证:(1)f(x)在(-1,+∞)上为增函数。

(2)方程fx没有实根第二问应该是方程fx=0没有负实根
2025-01-06 02:07:34
推荐回答(4个)
回答1:

f(X)=a的x次方+(x-2)/(x+1) (a>1)
=a^x+[(x+1)-3]/(x+1)
=a^x+1-3/(x+1)
a^x 是增函数
1/(x+1)在(-1,+∞)上为减函数,
所以-1/(x+1)在(-1,+∞)上为增函数
从而f(X)=a的x次方+(x-2)/(x+1) (a>1)在(-1,+∞)上为增函数

回答2:

对任意 -1< s < t < +∞
f(s) - f(t)
= a^s + (s-2)/(s+1) - a^t - (t-2)/(t+1)
= a^s - a^t + (s-2)/(s+1) - (t-2)/(t+1)
= a^s - a^t + {(s-2)(t+1) - (s+1)(t-2)} / {(s+1)(t+1)}
= a^s - a^t + {(st-2t+s-2) - (st+t-2s-2)} / {(s+1)(t+1)}
= a^s - a^t + 3(s-t) / {(s+1)(t+1)}
< 0
所以f(x)在(-1,+∞)上为增函数

回答3:

设m,n同在(-1,+∞)上且mf(n)-f(m)=a^n-a^m+(n-2)/(n+1) -(m-2)/(m+1) =a^n-a^m+3/(m+1) -3/(n+1)
a>1,则a^n>a^m,a^n-a^m>0
n+1>m+1>0,则1/(m+1) >1/(n+1),3/(m+1) -3/(n+1)>0
f(n)>f(m),得证

回答4:

函数求导啊,直接就出来了