平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
十字相乘法初步公式:x^2+(p+q)x+pq=(x+p)(x+q)
十字相乘法通用公式:如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d)
注意,a,b,c,p,q这些可能是常数,可能是代数式,注意观察
一个快捷的方法是余式定理:如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a,再用长除法用x-a除以f(x)降次,多用几次得到答案后,根据答案再用拆项添项的办法去做题
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
十字相乘法初步公式:x^2+(p+q)x+pq=(x+p)(x+q)