4+9+16+...+(n+1)^2的和?

2024-12-12 18:49:19
推荐回答(4个)
回答1:

1²+2²+3²+--------+n²=n(n+1)(2n+1)/6
4+9+16+...+(n+1)²
=1²+2²+3²+--------+(n+1)²-1
=(n+1)(n+2)(2n+3)/6-1
=[(n+1)(n+2)(2n+3)-6]/6
=(2n³+9n²+11n)/6

回答2:

平方和公式n(n+1)(2n+1)/6   即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6

回答3:

用公式:1^2+2^2+3^2+……+m^2=m(m+1)(2m+1)/6,
4+9+16+...+(n+1)^2
=(n+1)(n+2)(2n+3)/6-1.

回答4:

4+9+16+...+(n+1)^2=(n+1)^3/3+(n+1)^2/2+(n+1)/6-1